Dual-lumen Endotracheal Tube

Created on Wed, 06/17/2015 - 20:42
Last updated on Wed, 06/17/2015 - 21:49

Next Chapter:

The item discussed here is the Robertshaw 28Fr left-sided double lumen endotracheal tube. Dorsch and Dorsch describe this thing as a "lung isolation device". Of course, then Dorsch and Dorsch get into some indepth discussions of every type of rare and exotic dual lumen tube there is. There is the Carlens, the White, the Robertshaw, the Broncho-Cath, the Sher-I-Bronch, the Silbroncho, and so forth and so on.  I question the relevance of these details in the ICU. We are infrequently exposed to a mind-paralyzing array of choice when it comes to dual lumen tubes.

Anatomy of the item

There are several species of these devices; the major distinction one needs to be aware of is the very important difference between a right-sided and a left-sided dual lumen tube.

Rightness and leftness

The right and left sided DLTs are so named according to the bronchus they are supposed to enter. The right sided DLT, for instance, is designed to penetrate the right main bronchus.

There is one major difference between the design of the right and left sided dual lumen tubes.

This difference is derived from the anatomical difference between the right and the left bronchial trees.

I will use this stolen Greys Anatomy picture to illustrate.

difference between the right and left sided dual lumen tubes

  • The right-sided tube has a weirdly shaped "eccentric" cuff, to prevent the occlusion of the right upper lobe bronchus.

  • The left sided tube has a normal straight cuff.

Viewed side by side, the difference is obvious.

dual lumen tube cuffs

This website by Dr Tilakaratna is the source for the above image. I had to steal it, because my department (understandably) did not let me unwrap and photograph expensive equipment. All credit is therefore due to Dr Tilakaratna, a tireless airway enthusiast.

Anyway.

Weird size indicators

Yes, these tubes are not sized according to their internal diameter, but rather according to the French catheter gauge (i.e. the diameter in mm. times 3), which corresponds to their external diameter. This is because there are actually two internal diameters, and the lumens are not exactly circular in cross-section, which means the mathematical diameter and the actual air flow rate though the tube are only vaguely related.

There is still some relationship between the external French Gauge and the internal diameter:

French size Internal diameter (mm)
28 7
35 8
37 9
39 10
41 11

But... how meaningful is this size system?

Not very.

In fact, even the reported diameter somewhat unreliable.

An excellent article on this matter is available as free full text. Among the many excellent points made, the authors lament the inconsistent and manufacturer-specific relationship between quoted tube size, actual measured tube size, and the bronchial diameter of the patient whom it is used for. A comment is made regarding the tight tolerances of normal endotracheal tubes which comply with ISO standards, and surprise is expressed regarding the lack of such tight standards in the manufacture of tracheobronchial tubes.

dual lumen tube size and french gauge relationship

That's right, the French gauge of the DLT refers to the almost completely useless measurement of the external tube diameter. Of course, the usefullness of the tube, its entire purpose is related to the external diameter of the bronchial segment. This measurement was often not reported by the manufacturer; however now that the ISO has made it mandatory it should appear on the packaging.

However to know this diameter is vitally important, because the endobronchial segment diameter needs to closely match the diameter of the bronchus in order to actually occlude it.

Selecting an appropriate size of dual lumen endotracheal tube

One can crudely estimate the size required by simply stating that boys need bigger tubes.

Thus, one can make the distinction that the girls get sizes 28-37, and boys get sizes 37-41.

However, this is somewhat unscientific.

One can get all clever about it, and estimate the tube size according to the patient's height, expecting that the length and diameter of the trachea is loosely related to this value. However, it seems that the diameter of the left main bronchus is only related to height among males and that the height-bronchus relationship breaks down among women. It gets even weirder. Among males the left main bronchus seems to dilate with age, increasing in diameter by about 1mm every 25 years.

One can get even more clever and use chest Xrays to directly measure the diameter of the left main bronchus off the film. The magnification actor one applies is about 10%. Then, one would need to go and measure the endobronchial segment of the DLT, because the diameter is not recorded anywhere.

In any case, the selected DLT diameter should be about 1-2mm smaller than that of the calculated left mainstem bronchus diameter.

Depth markers

Like every other sort of endotracheal tube, the DLT has markers of depth along its side, which give one some sort of an impression of how deep one has shoved this thing. It also allows you to make a record of tube position, so one can watch for its migration over time.

Deciding on the appropriate depth of the dual lumen endotracheal tube

To the question, "how deep do you shove it", one can respond with the sensible statement that insertion depth is determined by appropriate bronchial cuff position, which is confirmed by bronchoscopy. However, there may be some relationship between patient size and correct tube placement depth. For instance, one study among 130 patients found that 170cm humans typically required an insertion depth of 29cm, and that for every 10cm of height difference the tube depth varied by 1cm. However, the relationship was not strong enough. The variation was so wide that the authors could not recommend this as a means of confirming appropriate tube position.

blue designantion of endobronchial DLT components

Blue colour designates endobronchial equipment

The endobronchial lumen is traditionally blue, and all of its connectors and extensions are by convention blue as well. This is a safety feature; the blue cuff also has a blue pilot balloon, with a blue valve, so it is obvious which is the endobronchial and which is the endotracheal ventilator circuits. The blueness extends to the ventilator connections, so that you know which circuit to clamp.

Blue cuff balloon of the endobronchial segment

Why did they settle on blue? It may be easier to see in the bronchus, compared to other colours. The reason for the vivid blue is the ease with which the balloon is visualised on direct bronchoscopy.

The blue balloon is significantly smaller than the normal tracheal balloon. Typically, no more than 3ml of air should be required to inflate it fully.

DLT connector to the ventilator circuit

Ventilator connector

This is a "double adaptor" which connects the two lumens to the same ventilator. Of course, it does not cater for the slightly insane practice of ventilating each lung independently.

The connector has two "soft" segments, which are made of silicone, softer and springier than the PVC. These are for your clamp. By clamping one of these segments, one is able to accomplish lung isolation.

The silicone is soft to ensure that it can be clamped safely without fracturing. A normal ETT is made of PVC, if clamped and re-clamped frequently, may develop little cracks.

There is, at the back of both airway connectors, a small port with a one-way valve. This port is designed as the point of entry for the bronchoscope. The valve permits bronchoscopy with minimal loss of pressure (and, with minimal anaesthetic gas blasting into the face of the anaesthetist who does the bronchoscopy).

Details of function

The function of the DLT is childishly simple. Having each lung connect to its own tube gives one the power to only ventilate one lung at a time, allowing the other lung to deflate (as in thoracic surgery) or fill up with blood, as the case may be.

This avoids the open pneumothorax problem of thoracic surgery, where the operator is constantly frustrated either by the inflated lung of positive pressure ventilation, or by the creepy asymmetry of "pendelluft" ventilation (where the collapsed lung expands in expiration and contracts in inspiration, in a spontaneously breathing patient). Brodsky and Lemmens give a detailed account of what thoracic anaesthesia was like before the first Carlens tubes.

Indications for use

At first, Carlens had intended his dual-lumen tube to be used for bronchospirometery, that is the measurement of the respiratory function of each lung independently. Its adaptation as a conduit for anaesthetic gases and lung isolation device came soon thereafter.

General indications for the use of a dual lumen endotracheal tube

  • Prevention of cross-contamination of one lung by the other, eg. in the following cases:
    • Infection (e.g. unilateral pulmonary abscess)
    • Massive pulmonary haemorrhage
  • Enable the ventilation of each lung with a different ventilation setting in settings where the each hemithorax is wildly different from the other, for example:
    • Severe chest injury
    • Bronchopleural fistula
    • Open chest (eg. mid thoracic surgery)
    • Giant unilateral lung cyst or bulla
  • Bypass a damaged section of the airway
    • Tracheobronchial tree disruption /Major airway trauma
  • Permit the lavage of each lung independently - pulmonary alveolar proteinosis is frequently mentioned as an indication, and I suppose if one finds oneself bringing it up during a viva, one should then be prepared to discuss what it is.

When possible, right sided tubes are to be avoided.

The left main bronchus is about 50-60mm long, whereas the right main bronchus is only about 20-25mm long. The left sided tubes have a much greater margin of safety, as they are much easier to insert. Thus, it is generally said that the only indication for the insertion of a right-sided tube is an operation which is performed on the left main bronchus. In every other case, a left sided tube is preferred.

Contraindications for use

Let us not get bogged down with contraindications to intubation in general.

Let us focus the contraindications to intubating with a dual-lumen tube.

  • Difficult intubation - if you don't think a normal ETT will be easy to insert, then a dual lumen ETT will be even more difficult.
  • Obstruction of the ipsilateral bronchus (i.e. don't insert a left sided DLT into a person with a left mainstem bronchus obstruction)
  • Rapid or hurried intubation - these things are not exactly quick or easy to insert, so if there is some urgent need to intubate them, perhaps the standard ETT is good enough.

Methods of use/insertion

Again, intubation in general and the various methods of DLT intubation have been covered extensively.

I will not digress into debating the merits of the different methods, except in brief.

The blind method

  • The patient is intubated routinely, and both balloons are inflated
  • Both lumens are ventilated first;
  • Each lumen is sequentially clamped, and the hemithorax auscultated to ensure ventilation.
  • In the case of a right sided tube, one must auscultate the right apex, to ensure that the right upper lobe bronchus has not been blocked by the balloon.

The bronchoscope-guided method

  • The patient is intubated routinely, and both balloons are inflated.
  • A bronchoscope is passed though the tracheal lumen and the position of the left endobronchial tube is confirmed: it should be obvious whether the tube is in the left mainstem bronchus, or the right, or whether it is dangling above the carina. The DLT is then adjusted into a correct position.
  • In practice, one very rarely needs to go down the endobronchial lumen. On the left, there really is nothing to see down there. On the right, one might be tempted to assure oneself of correct position, particularly whether the right upper lobe bronchus is blocked - but realistically, one might get more information about that by auscultating the right apex.

Pros and cons of each methods

  • The blind approach is slower to achieve good position
  • The blind approach frequently will still require bronchoscopy to troubleshoot a malposition
  • The bronchoscope-guided approach is typically more accurate and faster, but takes a long time to set up.

Establishing whether lung isolation is total

Once this complex dance is complete, one might be tempted to ask, "am I actually isolating the lung? Is there a lung-to-lung leak?"

This question can be answered by the measurement of expired CO2 in the clamped tracheal lumen.

capnometry in checking the quality of lung isolation with a DLT

Observe: if the lung were truly isolated, then surely it would receive none of the contralateral lung's CO2, and thus have no waveform. Of course, in practice, a small leak will probably not be detected by this method. But one would be much less concerned about a small leak. The core goal would still be achieved - huge gobs of infected mucus or bloody clot will not be rolling constantly into the healthy lung.

Safety features

Yes, the DLT shares all of the safety features of the single lumen ETT, which are as follows:

  • Standardised 15mm connector to fit all airway devices
  • Low-allergen PVC construction, free of latex
  • Transparent body,to see blood or vomit
  • Markings to indicate depth of insertion
  • High volume low pressure cuff to seal the trachea
  • Pilot cuff to gauge cuff pressure
  • Rounded atraumatic edges
  • Murphy's eye to protect against occlusion
  • Radio-opaque line to help gauge position on chest X-rays

However, the dual lumen tube has a few added extras:

  • Blue designation for the endobronchial components
  • Soft silicon portion of the ventilator connector, to ensure that it can be clamped safely without fracturing
  • Small volume endobronchial cuff, to prevent bronchial mucosal ulceration
  • Specially designed eccentric balloons for right-sided DLTs, preventing the obstruction of the right upper lobe bronchus

Complications of use

These complications are unique to the dual lumen tube:

  • Failure of intubation - as previously mentioned, these things are not exactly quick or easy to insert. The chance of getting it wrong is considerably greater, even with expertise.
  • Success of tracheal intubation, but failure of lung isolation - the tube fails to isolate the correct lung
  • Tracheal injury - the tube is rigid and thick, more likely to damage the trachea on insertion, and there is a large cuff to inflate which may put additional pressure on the tracheal walls.
  • Bronchial injury - the bronchial cuff may put too much pressure on the bronchial wall (which is far from robust) and cause a pressure area; on top of that it is possible to rupture the bronchus with a rough intubation.
  • Airway oedema - the size of the tube and its rigidity may give rise to greater tracheobronchial injury, with more oedema and therefore an increase in the difficulty of re-intubation.

These complications are common to both the dual lumen tube and the normal ETT:

  • Oesophageal intubation
  • Obstruction of the tube (be it kinked by teeth or clogged with phlegm)
  • Dislodgement above the glottis (tube falling out)
  • Cuff rupture, pressure loss
  • Trauma due to intubation (eg. tracheobronchial injury, even perforation)
  • Mucosal ulceration and necrosis from prolonged intubation

 

References

A detailed autopsy of these devices can be found in the 5th edition of "Understanding Anaesthesia Equipment" By Dorsch and Dorsch. Section III, chapter 20. This chapter seems to be available for free.

Another outstanding resource, which I have shamelessly plundered, can be found online - in an online medical library belonging to the Sultan Qaboos University, in the Sultanate of Oman; therein I have discovered a treasure of anaesthetic and critical care literature.

Russell, Walter John, and T. S. Strong. "Dimensions of double-lumen tracheobronchial tubes." Anaesthesia and intensive care 31.1 (2003): 50-53.

Hannallah MS, Benumof JL, Ruttimann E. The relationship between left mainstem bronchial diameter and patient size. J Cardiothor Vasc Anesth 1995; 9:119-121.

Dyer RA, Heijke SAM, Russell WJ, Bloch MB, James MF. Can insertion length for a double-lumen endobronchial tube be predicted? Anaesth Intensive Care 2000; 28:666-668.

Hampton T, Armstrong S, Russell WJ. Estimating the diameter of the left main bronchus. Anaesth Intensive Care 2000; 28:540-542.

International Standards Organization. Tracheobronchial tubes—recommendations for size designation and labeling (ISO/TS 16628). Geneva, Switzerland: Author, 2003. - warining, the ISO make you pay for this!

Brodsky, J. B. "Lung separation and the difficult airway." British journal of anaesthesia 103.suppl 1 (2009): i66-i75.

Cheong, K. F., and K. F. Koh. "Placement of left-sided double-lumen endobronchial tubes: comparison of clinical and fibreoptic-guided placement."British journal of anaesthesia 82.6 (1999): 920-921.

CARLENS, Eric. "A new flexible double-lumen catheter for bronchospirometry."The Journal of thoracic surgery 18.5 (1949): 742.

Brodsky, J. B., and H. J. M. Lemmens. "The history of anesthesia for thoracic surgery." Minerva anestesiologica 73.10 (2007): 513.