Oculocephalic and Cold Caloric Reflexes (CN III, IV, VI and VIII)

Created on Sat, 09/19/2015 - 21:42
Last updated on Wed, 10/12/2016 - 03:30

Previous Chapter:

The oculocephalic reflex and the cold caloric (oculovestibular) reflex are used to test brainstem function in profoundly comatose patients. An intact reflex basically confirms that the brainstem is intact. Involved are all the oculomotor nerves (provided you move the head up and down, not only left and right) as well as the 8th nerve. Of course, one cannot perform this test if one has a ruptured eardrum, or if the ear canal is completely clogged with macerated brain tissue (as is often the case in these base of skull fracture situations). A demonstration of a normal oculocephalic reflex was  held for Question 25.4 from the first paper of 2011 - the candidates were expected to explain how this helps in the diagnosis of coma.

The ideal reference for this topic would have to be the LITFL page, which borrows heavily from Plum and Posner's Diagnosis of Stupor and Coma.

Oculocephalic reflex

For a complete test and a maximal stimulus, the following manoeuvres must be performed:

  • Rotate the head to one direction. The eyes should deviate in the opposite direction. This deviation should be smooth and conjugate.
  • Keep the head in that position. The eyes should slowly return to midline.
  • Rotate the head to the opposite direction; i.e. if facing to the right, turn the head to face the left. This is the maximal stimulus for this test. Again, the eyes should move smoothly in the opposite direction.
  • Tilt the head up and down, as if nodding. The eyes should still move in the opposite direction. On tilting the head down, the eyelids might also open (this is called the doll's head phenomenon)
  • LITFL comments that it is essential to have a cleared C-spine prior to performing this test, which implies that some of the CICM examiners may be put off by the sickening crunch of vertebrae.

So, a normal response is the conjugate deviation of gaze, and an abnormal response is a persistent fixed gaze, with no eye movement. Weirdly, if you grab the head of a conscious person and give it a  good twist, their eyes will remain facing midline because the voluntary control of eye movement overcomes this reflex. Thus, the oculocephalic reflex is only testable in the unconscious patient.

So, what if it's normal?


The pathways which command this reflex involve vestibular nuclei, lower pontine tegmentum, the upper pontine tegmentum, the midbrain paramedian tegmentum, and the medial longitudinal fasciculus. These are large, central brainstem regions, which overlap with the ascending arousal system. Thus, it would be highly unlikely that a structural lesion of some sort (like a stroke) has taken out the rest of the brainstem, leaving these regions intact.

In other words, if the oculocephalic reflex is intact, the coma is unlikely due to a structural brainstem lesion.

Caloric vestibulo-ocular reflex

The oculocephalic reflex represents a submaximal stimulus, and if one were taking their cranial nerve examination seriously, one would also insist on performing a cold caloric test.

The recommended testing method is as follows:

  • Perform otoscopy to confirm that the ear drum is intact
  • Raise the head of the bed to 30 degrees, to bring the horizontal semicircular canal in to a vertical position so that the response is maximal.
  • Infuse ice water into the ear canal. Plum and Posner recommend using a 50ml syringe tipped with a plastic catheter, eg. an IV cannula. In practice, this can sometimes perforate the eardrum. A Twomey conical-tipped syringe is equally good. It is recommended to infuse the ice water into the ear at a rate of about 10ml/min. Intensivists are frequently impatient creatures, and end up irrigating the ear with the whole 50mls within a few seconds, which (though common) is the incorrect technique.
  • The eyes should deviate towards the tested ear.
  • If a response is obtained, it will dissipate over about 5 minutes; after this the opposite ear may be tested.
  • In order to complete the test, one should also perform the irrigation of both ears. Cold water in both ears should cause an downward deviation of the eyes, and warm water should cause an upward deviation. To remember this, consider using a stupid meteorological mnemonic device: you look up at the hot midday sun, and look down at the cold fallen snow.

The effect of the cold water in the ear is to fool the hair cells of the ampulla into thinking that the head is being turned to the opposite side.  If this test is performed with cold water in an awake patient, the eyes will still tend to drift to the tested ear. The awake patient will try to compensate for this with fast sacchades back to midline, or some other point of fixation. This has given rise to the COWS mnemonic: Cold - Opposite, Warm - Same. COWS refers to the direction of fast nystagmus in the awake patient. In the comatose patient, there will be little or no nystagmus, and the deviation of the eyes will be completely opposite (Warm- Opposite, Cold - Same). In fact, the presence of nystagmus on cold caloric testing in the apparently unconscious patient suggests that they are in fact conscious, and only pretending to be comatose.

Plum and Posner, on page 66 of their famous textbook (4th edition), include a well known diagram of lesions at different levels and their associated findings on oculocephalic and caloric testing. One major flaw of this diagram is the artists' otherwise laudable attachment to the realistic portrayal of the human head. Unfortunately, that does mean that one really needs to squint to see which way the eyes are going. In order to rectify this minor problem, as well as to avoid any copyright complications,  a series of diagrams with comically exaggerated features is offered.

Normal oculocephalic and oculovestibular reflexes

Normal oculocephalic and oculovestibular reflexes

A lateral pontine lesion (right)

Right lateral pontine lesion -  oculocephalic and oculovestibular reflexes

A lateral pontine lesion has taken out the vestibular nuclei on the right side. Neither eye will respond to stimulus on that side (as they will not recognise it as a stimulus).

Bilateral medial longitudinal fasciculus (MLF) lesion: bilateral internuclear ophthalmoplegia

Bilateral medial longitudinal fasciculus (MLF) lesion: bilateral internuclear ophthalmoplegia

As you can see, only the abducens responses are present. CN VI still abducts the gaze towards the ice water. However, oculomotor and trochlear nerve nuclei (CN III and IV) are not talking to each other. The result resembles a complete lesion in the midbrain (i.e. destruction of the CN III and IV nuclei)- but in a bilateral MLF lesion, the pupillary light reflex would be spookily preserved, and that is how you would discriminate between them.

A right paramedian pontine lesion ("one and a half syndrome")

This is a syndrome where both the MLFs are taken out, and one of the abducens nuclei. The result is a situation where only the unaffected side will behave normally in response to cold caloric testing (that's the "half").



The LITFL summary of cranial nerve lesions is without peer in terms of useful information density.

Walker, H. Kenneth, W. Dallas Hall, and J. Willis Hurst. "Clinical methods." 3rd edition.(1990).Chapter 58 The Pupils - by Robert H. Spector.

Clinical Methods: The History, Physical, and Laboratory Examinations.

Broadway, David C. "How to test for a relative afferent pupillary defect (RAPD)."Community Eye Health 25.79-80 (2012): 58.

Fincham, Edgar F. "The accommodation reflex and its stimulus." The British journal of ophthalmology 35.7 (1951): 381.

Maramattom, Boby Varkey, and Eelco FM Wijdicks. "Uncal herniation."Archives of neurology 62.12 (2005): 1932-1935.